cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A039645 Number of steps to fixed point of "k -> k/2 or (k+1)/2 until result is prime", starting with prime(n)+1.

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 3, 3, 4, 5, 5, 2, 3, 3, 5, 4, 6, 2, 3, 5, 2, 5, 4, 3, 4, 4, 4, 5, 5, 3, 7, 4, 6, 6, 4, 4, 2, 3, 5, 5, 4, 4, 7, 2, 5, 5, 3, 6, 4, 4, 3, 8, 3, 8, 5, 5, 5, 5, 2, 3, 3, 4, 7, 7, 2, 7, 3, 4, 6, 6, 3, 5, 5, 4, 8, 8, 6, 2, 3, 3, 4, 2, 7, 3, 7, 7, 3, 2, 5, 5, 4, 9, 4, 5, 9, 9, 9, 3, 3, 2, 3, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a039645 n = snd $ until ((== 1) . a010051 . fst)
                (\(x, i) -> ((x + 1) `div` 2 , i + 1)) (a000040 n + 1, 1)
    -- Reinhard Zumkeller, Nov 17 2013
  • Mathematica
    f[k_] := Which[PrimeQ[k], k, EvenQ[k], k/2, True, (k+1)/2];
    a[n_] := Length[FixedPointList[f, Prime[n] + 1]] - 1;
    Array[a, 102] (* Jean-François Alcover, Mar 01 2019 *)

Extensions

Offset corrected by Reinhard Zumkeller, Nov 17 2013

A039636 Number of steps to fixed point of "n -> n/2 or (n-1)/2 until result is prime".

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 3, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 4, 4, 2, 2, 3, 1, 3, 1, 5, 5, 2, 2, 5, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 5, 5, 5, 3, 1, 3, 3, 4, 4, 2, 1, 4, 1, 2, 2, 6, 6, 6, 1, 3, 3, 3, 1, 6, 1, 2, 2, 3, 3, 3, 1, 5, 5, 2, 1, 5, 5, 2, 2, 4, 1, 4, 4, 3, 3, 2, 2, 6, 1, 6, 6, 6, 1, 6
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a039636 1 = 1
    a039636 n = snd $ until ((== 1) . a010051 . fst)
                            (\(x, i) -> (x `div` 2 , i + 1)) (n, 1)
    -- Reinhard Zumkeller, Nov 17 2013
  • Mathematica
    nerlist[ n_Integer ] := Length/@Drop[ FixedPointList[ If[ EvenQ[ # ]&&#>2, #/ 2, If[ PrimeQ[ # ]||(#===1), #, (#-1)/2 ] ]&, n, 20 ], -1 ]

Extensions

Offset corrected by Reinhard Zumkeller, Nov 17 2013

A039635 Fixed point of "n -> n/2 or (n+1)/2 until result is prime".

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 5, 5, 11, 3, 13, 7, 2, 2, 17, 5, 19, 5, 11, 11, 23, 3, 13, 13, 7, 7, 29, 2, 31, 2, 17, 17, 5, 5, 37, 19, 5, 5, 41, 11, 43, 11, 23, 23, 47, 3, 13, 13, 13, 13, 53, 7, 7, 7, 29, 29, 59, 2, 61, 31, 2, 2, 17, 17, 67, 17, 5, 5, 71, 5, 73, 37, 19, 19, 5, 5, 79, 5, 41
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a039635 1 = 1
    a039635 n = until ((== 1) . a010051) ((flip div 2) . (+ 1)) n
    -- Reinhard Zumkeller, Nov 17 2013
  • Mathematica
    upp[ n_Integer ] := FixedPoint[ If[ EvenQ[ # ]&&#>2, #/2, If[ PrimeQ[ # ]||(#=== 1), #, (#+1)/2 ] ]&, n, 20 ]

Extensions

Offset corrected by Reinhard Zumkeller, Nov 17 2013

A039644 Number of steps to fixed point of "k -> k/2 or (k+1)/2 until result is prime", starting with prime(n)-1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 5, 4, 4, 3, 2, 3, 2, 6, 3, 5, 5, 5, 2, 4, 6, 4, 4, 2, 5, 5, 7, 4, 4, 6, 3, 4, 6, 3, 2, 3, 2, 4, 7, 7, 5, 5, 3, 6, 2, 4, 4, 8, 8, 8, 8, 2, 3, 5, 7, 7, 3, 3, 7, 7, 7, 3, 3, 6, 2, 6, 6, 2, 5, 4, 8, 2, 3, 6, 6, 6, 4, 4, 7, 7, 7, 7, 7, 5, 5, 5, 2, 2, 4, 5, 9, 2, 3, 6, 3, 6, 3, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a039644 1 = 1
    a039644 n = snd $ until ((== 1) . a010051 . fst)
                (\(x, i) -> ((x + 1) `div` 2 , i + 1)) (a000040 n - 1, 1)
    -- Reinhard Zumkeller, Nov 17 2013
  • Mathematica
    (* See A039637. *)

Extensions

Offset corrected by Reinhard Zumkeller, Nov 17 2013
Showing 1-4 of 4 results.