A039726 Recursive prime generating sequence.
2, 3, 5, 7, 11, 19, 29, 37, 47, 67, 103, 179, 191, 223, 271, 293, 317, 577, 643, 673, 809, 863, 877, 1049, 1093, 1129, 1151, 1381, 1613, 1637, 2089, 2131, 2311, 2957, 3623, 3833, 4253, 4271, 4423, 4673, 5939, 7717, 8167, 9133, 9533, 9539, 9679, 11059, 11743, 11969, 14759, 15859, 15971, 16139, 17431, 17713, 17761, 19309, 19373, 20747, 20983, 23741, 25261, 25933
Offset: 1
Keywords
References
- H. Dubner, Recursive Prime Generating Sequences, Journal of Recreational Mathematics, 29(3) 170-175 1998 Baywood NY.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..350
Programs
-
Mathematica
k = 1; cp = 2; ct = 1; n[ct] = 2; While[ct < 64, k++; p = Prime[k]; cp1 = cp*p; If[PrimeQ[cp1 + 1], cp = cp1; ct++; n[ct] = p]]; Table[n[k], {k, 1, ct}] (Lei Zhou) f[s_List] := Block[{p = Times @@ s, q = NextPrime@ s[[-1]]}, While[ !PrimeQ[p*q + 1], q = NextPrime@ q]; Append[s, q]]; Nest[f, {2}, 63] (* Robert G. Wilson v, Jul 20 2017 *)
Formula
2*3*5*7*...*a(n) +1 is prime. a(n) is prime. a(n) > a(n-1) with a(n) being the smallest possible prime.
Extensions
Corrected and extended by Ray Chandler, Nov 06 2003
Further terms from Lei Zhou, Dec 08 2005