cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039726 Recursive prime generating sequence.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 29, 37, 47, 67, 103, 179, 191, 223, 271, 293, 317, 577, 643, 673, 809, 863, 877, 1049, 1093, 1129, 1151, 1381, 1613, 1637, 2089, 2131, 2311, 2957, 3623, 3833, 4253, 4271, 4423, 4673, 5939, 7717, 8167, 9133, 9533, 9539, 9679, 11059, 11743, 11969, 14759, 15859, 15971, 16139, 17431, 17713, 17761, 19309, 19373, 20747, 20983, 23741, 25261, 25933
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com)

Keywords

References

  • H. Dubner, Recursive Prime Generating Sequences, Journal of Recreational Mathematics, 29(3) 170-175 1998 Baywood NY.

Crossrefs

For the primes so generated see A087864.
Cf. A083771.

Programs

  • Mathematica
    k = 1; cp = 2; ct = 1; n[ct] = 2; While[ct < 64, k++; p = Prime[k]; cp1 = cp*p; If[PrimeQ[cp1 + 1], cp = cp1; ct++; n[ct] = p]]; Table[n[k], {k, 1, ct}] (Lei Zhou)
    f[s_List] := Block[{p = Times @@ s, q = NextPrime@ s[[-1]]}, While[ !PrimeQ[p*q + 1], q = NextPrime@ q]; Append[s, q]]; Nest[f, {2}, 63] (* Robert G. Wilson v, Jul 20 2017 *)

Formula

2*3*5*7*...*a(n) +1 is prime. a(n) is prime. a(n) > a(n-1) with a(n) being the smallest possible prime.

Extensions

Corrected and extended by Ray Chandler, Nov 06 2003
Further terms from Lei Zhou, Dec 08 2005