A039756 Triangle of B-analogs of Stirling numbers of 2nd kind.
1, 1, 1, 1, 4, 1, 1, 9, 13, 1, 1, 16, 58, 40, 1, 1, 25, 170, 330, 121, 1, 1, 36, 395, 1520, 1771, 364, 1, 1, 49, 791, 5075, 12411, 9219, 1093, 1, 1, 64, 1428, 13776, 58086, 96096, 47188, 3280, 1, 1, 81, 2388, 32340, 209622, 618870, 719860, 239220, 9841, 1
Offset: 0
Examples
1; 1, 1; 1, 4, 1; 1, 9, 13, 1; 1, 16, 58, 40, 1; 1, 25, 170, 330, 121, 1; 1, 36, 395, 1520, 1771, 364, 1; 1, 49, 791, 5075, 12411, 9219, 1093, 1;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Ruedi Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
Crossrefs
Cf. A039755.
Programs
-
PARI
T(n,k)=if(k<0||k>n,0,n!*polcoeff(polcoeff(exp(x*y+(exp(2*x*y+x*O(x^n))-1)/(2*y)),n),k))
Formula
Sum a(n,n-k) x^n*y^k/n! = exp(x + y/2*(exp(2*x) - 1)).
T(n, k) = A039755(n, n-k). - Tilman Piesk, Oct 27 2019
Comments