cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039759 Number of edges in the Hasse diagrams for the B-analogs of the partition lattices.

Original entry on oeis.org

0, 1, 8, 58, 432, 3396, 28384, 252456, 2385280, 23874448, 252380800, 2809461920, 32841595136, 402105388608, 5144478074368, 68625615724160, 952603633463296, 13735016459768064, 205358227932235776, 3179027634604907008, 50881656554805620736, 840901491722391454720, 14332437167995507302400
Offset: 0

Views

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Crossrefs

Edges in the Hasse diagrams for partition lattices: A003128, D-analogs = A039765.

Programs

  • Mathematica
    max = 18; CoefficientList[ Series[1/4*E^x*(E^(4*x) - 1)*E^((1/2)*(E^(2*x) - 1)), {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 04 2013, after e.g.f. *)
  • PARI
    x='x+O('x^66); concat([0], Vec( serlaplace( 1/4*(exp(4*x)-1)*exp(1/2*exp(2*x)+x-1/2) ) ) ) \\ Joerg Arndt, Oct 04 2013

Formula

E.g.f.: 1/4 * (exp(4*x)-1) * exp(1/2*exp(2*x)+x-1/2).