cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003128 Number of driving-point impedances of an n-terminal network.

Original entry on oeis.org

0, 0, 1, 6, 31, 160, 856, 4802, 28337, 175896, 1146931, 7841108, 56089804, 418952508, 3261082917, 26403700954, 221981169447, 1934688328192, 17454004213180, 162765041827846, 1566915224106221, 15553364227949564, 159004783733999787, 1672432865100333916
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003128 n = a003128_list !! n
    a003128_list = zipWith3 (\x y z -> (x - 3 * y + z) `div` 2)
                   a000110_list (tail a000110_list) (drop 2 a000110_list)
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Magma
    [(Bell(n) - 3*Bell(n+1) + Bell(n+2))/2: n in [0..30]]; // Vincenzo Librandi, Sep 19 2014
    
  • Maple
    with(combinat); A000110:=n->sum(stirling2(n, k), k=0..n): f:=n->(A000110(n)-3*A000110(n+1)+A000110(n+2))/2;
  • Mathematica
    a[n_] := (BellB[n] - 3*BellB[n+1] + BellB[n+2])/2; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 12 2012, after Vladeta Jovovic *)
    max = 23; CoefficientList[ Series[1/2*(E^x - 1)^2*E^(E^x - 1), {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 04 2013, after e.g.f. *)
  • Maxima
    makelist((belln(n)-3*belln(n+1)+belln(n+2))/2,n,0,23); /* Emanuele Munarini, Jul 14 2011 */
    
  • PARI
    a(n)=sum(k=1,n,binomial(k,2)*stirling(n,k,2)) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    # Python 3.2 or higher required
    from itertools import accumulate
    A003128_list, blist, a, b = [], [1], 1, 1
    for _ in range(30):
        blist = list(accumulate([b]+blist))
        c = blist[-1]
        A003128_list.append((c+a-3*b)//2)
        a, b = b, c # Chai Wah Wu, Sep 19 2014
    
  • SageMath
    def A003128(n): return (bell_number(n) - 3*bell_number(n+1) + bell_number(n+2))/2
    [A003128(n) for n in range(40)] # G. C. Greubel, Nov 04 2022

Formula

a(n) = (Bell(n) - 3*Bell(n+1) + Bell(n+2))/2. - Vladeta Jovovic, Aug 07 2006
a(n+2) = A123158(n,4). - Philippe Deléham, Oct 06 2006
From Peter Bala, Nov 28 2011: (Start)
a(n) = Sum_{k=1..n} binomial(k,2)*Stirling2(n,k), Stirling transform of A000217.
a(n) = (1/(2*exp(1)))*Sum_{k>=0} k^n*(k^2-3*k+1)/k!. Note that k^2-3*k+1 = k*(k-1)-2*k+1 is an example of a Poisson-Charlier polynomial.
a(n) = D^n(x^2/2!*exp(x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A005493.
E.g.f.: (1/2)*exp(exp(x)-1)*(exp(x)-1)^2 = x^2/2! + 6*x^3/3! + 31*x^4/4! + ...
O.g.f.: Sum_{k>=0} binomial(k,2)*x^k/Product_{i=1..k} (1-i*x) = x^2 + 6*x^3 + 31*x^4 + ... (End)
a(n) ~ n^2 * Bell(n) / (2*LambertW(n)^2) * (1 - 3*LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021

Extensions

More terms from Vladeta Jovovic, Apr 14 2000
Typo in entries corrected by Martin Larsen, Jul 03 2008
Typo in e.g.f. corrected by Vaclav Kotesovec, Feb 15 2015

A039765 Number of edges in the Hasse diagrams for the D-analogs of the partition lattices.

Original entry on oeis.org

0, 0, 4, 31, 240, 1931, 16396, 147589, 1408224, 14214559, 151394940, 1696783221, 19958826080, 245788962199, 3161635135340, 42390110260685, 591257152058944, 8563898444592927, 128598641049231996
Offset: 0

Views

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Crossrefs

Edges in the Hasse diagrams for partition lattices: A003128, B-analogs = A039759.

Programs

  • Mathematica
    max = 18; e[n_, x_] := E^(n*x)/n; f[n_, x_] := (E^(n*x) - 1)/n; g[n_, x_] := (E^(n*x) - 1 - n*x)/n; se = Series[ f[4, x]*g[1, x]*e[1, f[2, x]] + e[1, x]*g[4, x]*e[1, g[2, x]], {x, 0, max}]; CoefficientList[se, x]*Range[0, max]! (* Jean-François Alcover, May 04 2012, after e.g.f. *)

Formula

E.g.f.: f_4(x)*g_1(x)*e_1(f_2(x)) + e_1(x)*g_4(x)*e_1(g_2(x)) where e_n(x) = 1/n exp(n x); f_n(x) = 1/n (exp(n x) - 1); g_n(x) = 1/n (exp(n x) - 1 - n x).

A174436 Partial sums of A039765.

Original entry on oeis.org

0, 0, 4, 35, 275, 2206, 18602, 166191, 1574415, 15788974, 167183914, 1863967135, 21822793215, 267611755414, 3429246890754, 45819357151439, 637076509210383, 9200974953803310, 137799616003035306
Offset: 0

Views

Author

Jonathan Vos Post, Mar 19 2010

Keywords

Comments

Partial sums of number of edges in the Hasse diagrams for the D-analogs of the partition lattices. The subsequence of primes in this partial sum begins: 45819357151439.

Crossrefs

Formula

a(n) = SUM[i=0..n] A039765(i).
Showing 1-3 of 3 results.