Original entry on oeis.org
0, 0, 4, 35, 275, 2206, 18602, 166191, 1574415, 15788974, 167183914, 1863967135, 21822793215, 267611755414, 3429246890754, 45819357151439, 637076509210383, 9200974953803310, 137799616003035306
Offset: 0
A003128
Number of driving-point impedances of an n-terminal network.
Original entry on oeis.org
0, 0, 1, 6, 31, 160, 856, 4802, 28337, 175896, 1146931, 7841108, 56089804, 418952508, 3261082917, 26403700954, 221981169447, 1934688328192, 17454004213180, 162765041827846, 1566915224106221, 15553364227949564, 159004783733999787, 1672432865100333916
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..100
- J. Riordan, The number of impedances of an n-terminal network, Bell Syst. Tech. J., 18 (1939), 300-314.
- R. Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
-
a003128 n = a003128_list !! n
a003128_list = zipWith3 (\x y z -> (x - 3 * y + z) `div` 2)
a000110_list (tail a000110_list) (drop 2 a000110_list)
-- Reinhard Zumkeller, Jun 30 2013
-
[(Bell(n) - 3*Bell(n+1) + Bell(n+2))/2: n in [0..30]]; // Vincenzo Librandi, Sep 19 2014
-
with(combinat); A000110:=n->sum(stirling2(n, k), k=0..n): f:=n->(A000110(n)-3*A000110(n+1)+A000110(n+2))/2;
-
a[n_] := (BellB[n] - 3*BellB[n+1] + BellB[n+2])/2; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 12 2012, after Vladeta Jovovic *)
max = 23; CoefficientList[ Series[1/2*(E^x - 1)^2*E^(E^x - 1), {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 04 2013, after e.g.f. *)
-
makelist((belln(n)-3*belln(n+1)+belln(n+2))/2,n,0,23); /* Emanuele Munarini, Jul 14 2011 */
-
a(n)=sum(k=1,n,binomial(k,2)*stirling(n,k,2)) \\ Charles R Greathouse IV, Feb 07 2017
-
# Python 3.2 or higher required
from itertools import accumulate
A003128_list, blist, a, b = [], [1], 1, 1
for _ in range(30):
blist = list(accumulate([b]+blist))
c = blist[-1]
A003128_list.append((c+a-3*b)//2)
a, b = b, c # Chai Wah Wu, Sep 19 2014
-
def A003128(n): return (bell_number(n) - 3*bell_number(n+1) + bell_number(n+2))/2
[A003128(n) for n in range(40)] # G. C. Greubel, Nov 04 2022
A039759
Number of edges in the Hasse diagrams for the B-analogs of the partition lattices.
Original entry on oeis.org
0, 1, 8, 58, 432, 3396, 28384, 252456, 2385280, 23874448, 252380800, 2809461920, 32841595136, 402105388608, 5144478074368, 68625615724160, 952603633463296, 13735016459768064, 205358227932235776, 3179027634604907008, 50881656554805620736, 840901491722391454720, 14332437167995507302400
Offset: 0
Ruedi Suter (suter(AT)math.ethz.ch)
Edges in the Hasse diagrams for partition lattices:
A003128, D-analogs =
A039765.
-
max = 18; CoefficientList[ Series[1/4*E^x*(E^(4*x) - 1)*E^((1/2)*(E^(2*x) - 1)), {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 04 2013, after e.g.f. *)
-
x='x+O('x^66); concat([0], Vec( serlaplace( 1/4*(exp(4*x)-1)*exp(1/2*exp(2*x)+x-1/2) ) ) ) \\ Joerg Arndt, Oct 04 2013
Showing 1-3 of 3 results.
Comments