A039766 Numbers k such that gcd(phi(k), k-1) = number of divisors of k.
1, 3, 21, 33, 57, 69, 77, 85, 93, 105, 125, 129, 141, 161, 175, 177, 201, 205, 209, 213, 221, 237, 249, 253, 309, 321, 329, 345, 365, 381, 393, 413, 417, 437, 445, 453, 473, 475, 485, 489, 493, 497, 501, 517, 533, 537, 565, 573, 581, 597, 629, 633, 649, 665
Offset: 1
Examples
phi(21)=12, gcd(12,20)=4, 21 is divisible by {1,3,7,21}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= t -> igcd(numtheory:-phi(t),t-1) = numtheory:-tau(t): select(filter,[$1..1000]); # Robert Israel, Mar 15 2019
-
PARI
isok(n) = gcd(eulerphi(n), n-1) == numdiv(n); \\ Michel Marcus, May 30 2014
Extensions
Term 1 prepended by Michel Marcus, May 30 2014