A039813 Matrix 5th power of Stirling2 triangle A008277.
1, 5, 1, 35, 15, 1, 315, 215, 30, 1, 3455, 3325, 725, 50, 1, 44590, 56605, 17100, 1825, 75, 1, 660665, 1060780, 415555, 60900, 3850, 105, 1, 11035095, 21772595, 10606470, 1998605, 172550, 7210, 140, 1, 204904830, 486459105, 286281665, 66528210, 7346955, 417690, 12390, 180, 1
Offset: 1
Examples
Triangle begins: 1; 5, 1; 35, 15, 1; 315, 215, 30, 1; 3455, 3325, 725, 50, 1; 44590, 56605, 17100, 1825, 75, 1; ...
Links
- Seiichi Manyama, Rows n = 1..140, flattened
Programs
-
Mathematica
max = 9; m = MatrixPower[Array[StirlingS2, {max, max}], 5]; Table[Take[m[[n]], n], {n, 1, max}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)
Formula
E.g.f. k-th column: (( exp(exp(exp(exp(exp(x)-1)-1)-1)-1)-1 )^k)/k!. [corrected by Seiichi Manyama, Feb 12 2022]