A039911 Triangle read by rows: number of compositions of n into relatively prime summands.
1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 0, 1, 5, 10, 9, 2, 0, 1, 6, 15, 20, 15, 6, 0, 1, 7, 21, 35, 34, 18, 4, 0, 1, 8, 28, 56, 70, 56, 27, 6, 0, 1, 9, 36, 84, 126, 125, 80, 30, 4, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0, 1, 11, 55, 165, 330, 462, 461, 325, 154, 42, 4, 0, 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 0
Offset: 1
Examples
Triangle begins: 1; 1, 0; 1, 2, 0; 1, 3, 2, 0; 1, 4, 6, 4, 0; 1, 5, 10, 9, 2, 0; 1, 6, 15, 20, 15, 6, 0; ...
Links
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
Crossrefs
Emeric Deutsch points out that the mirror-image, A101391, is a better version of this triangle.
Row sums give A000740.
Programs
-
Maple
with(numtheory): R:=proc(n,k) local s,d: s:=0: for d from 1 to n do if irem(n,d)=0 then s:=s+binomial(d-1,k-1)*mobius(n/d) fi od: RETURN(s) : end: seq(seq(R(n,n-k+1),k=1..n),n=1..15); # second Maple program: R:=proc(n,k) options remember: local j: if k=1 then RETURN(piecewise(n=1,1)) else RETURN(binomial(n,k)-add(floor(n/j)*R(j,k),j=k..n-1)) fi: end: seq(seq(R(n,n-k+1),k=1..n),n=1..15); # C. Ronaldo
Extensions
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 28 2004
Edited by Alois P. Heinz, May 06 2025
Comments