A039959 Number of ways of numbering the vertices of a cube so sum of the 8 numbers is n.
1, 1, 4, 7, 21, 37, 85, 151, 292, 490, 848, 1346, 2157, 3260, 4925, 7148, 10327, 14477, 20177, 27483, 37194, 49431, 65277, 84945, 109873, 140394, 178377, 224334, 280647, 348040, 429526, 526108, 641524, 777127, 937513, 1124461, 1343567, 1597115, 1891850, 2230685, 2621671, 3068438
Offset: 0
Keywords
Examples
For n=2 the 4 ways are: {0000 0002}, {0000 0011}, {0001 0100}, {0001 1000}. G.f. = 1 + x + 4*x^2 + 7*x^3 + 21*x^4 + 37*x^5 + 85*x^6 + 151*x^7 + 292*x^8 + ...
References
- J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-455; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.
Links
- Ray Chandler, Table of n, a(n) for n = 0..100
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1,-4,4,4,2,0,-10,0,2,4,4,-4,-1,-2,1,2,-1).
Programs
-
Maple
1/24/(1-x)^8+3/8/(1-x^2)^4+1/3/(1-x^3)^2/(1-x)^2+1/4/(1-x^4)^2;
-
Mathematica
a[ n_] := Ceiling[ (3 n^7 + 84 n^6 + 966 n^5 + 5880 n^4 + If[ OddQ@n, 22547 n^3 + 66276 n^2, 25382 n^3 + 100296 n^2] + 12 n (10547 + 35 If[ OddQ@n, If[ Mod[n, 6] < 5, 32, 0], If[ Mod[n, 6] == 2, 297, 329] + 54 Boole[Mod[n, 4] == 0]]) + 1) / 362880]; (* Michael Somos, Oct 17 2015 *)
-
PARI
{a(n) = if( n<-4, -a(-8 - n), polcoeff( subst( Pol([ 1, -1, -5, 5, 11, -4, -4]), x, x + 1/x) * x^6 / prod(k=1, 4, 1 - x^k)^2 + x * O(x^n), n))}; /* Michael Somos, Mar 05 2004 */
-
PARI
{a(n) = ceil( (3*n^7 + 84*n^6 + 966*n^5 + 5880*n^4 + if( n%2, 22547*n^3 + 66276*n^2, 25382*n^3 + 100296*n^2) + 12*n * (10547 + 35 * if( n%2, if( n%6<5, 32, 0), if( n%6==2, 297, 329) + 54*(n%4==0))) + 1) / 362880)}; /* Michael Somos, Oct 17 2015 */
Formula
G.f.: (x^12 - x^11 + x^10 + 6*x^8 + x^7 + 8*x^6 + x^5 + 6*x^4 + x^2 - x + 1) / ((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4))^2. - Michael Somos, Mar 05 2004
G.f.: (1/24) * (1 - x)^-8 + (3/8) * (1 - x^2)^-4 + (1/3) * (1 - x)^-2 * (1 - x^3)^-2 + (1/4) * (1 - x^4)^-2. - Michael Somos, Oct 17 2015
a(n) = -a(-8 - n) for all n in Z. - Michael Somos, Oct 17 2015
Comments