A040044 Primes p such that x^3 = 5 has a solution mod p.
2, 3, 5, 11, 13, 17, 23, 29, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 113, 127, 131, 137, 149, 163, 167, 173, 179, 181, 191, 197, 199, 211, 227, 233, 239, 241, 251, 257, 263, 269, 281, 293, 311, 313, 317, 337, 347
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(450) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 5}]; // Vincenzo Librandi, Sep 11 2012
-
Mathematica
ok [p_]:=Reduce[Mod[x^3 - 5, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
Comments