cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068947 Square roots of A068809.

Original entry on oeis.org

1, 2, 3, 7, 13, 17, 43, 63, 83, 167, 264, 313, 707, 836, 1667, 2236, 3114, 4472, 6833, 8167, 8937, 16667, 21886, 29614, 41833, 74833, 89437, 94863, 134164, 191833, 298327, 545793, 547613, 947617, 987917, 1643167, 3143167, 3162083, 5477133
Offset: 1

Views

Author

Francois Jooste (phukraut(AT)hotmail.com), Mar 15 2002

Keywords

Examples

			13^2 = 169 = A068809(5), so a(5)=13.
		

Crossrefs

Programs

  • Maple
    A007953 := proc(n) option remember: return add(d, d=convert(n, base, 10)): end: A068947 := proc(n) option remember: local k,p: if(n=1)then return 1: fi: k:=procname(n-1): p:=A007953(k^2): do k:=k+1: if(A007953(k^2)>p)then return k: fi: od: end: seq(A068947(n),n=1..20); # Nathaniel Johnston, May 04 2011

A069324 Primes in A068949.

Original entry on oeis.org

13, 19, 31, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 157, 163, 181, 193, 199, 211
Offset: 1

Views

Author

Francois Jooste (phukraut(AT)hotmail.com), Mar 15 2002

Keywords

Comments

Differs from A040047 at the 13th term. - Kevin Buzzard (k.buzzard(AT)imperial.ac.uk), Jun 20 2008

Examples

			a(4)=43 since the fourth prime in A068949 is 43.
		

Crossrefs

Programs

  • PARI
    disum(n)= { local(resul) ; resul=0 ; while(n>0, resul += n%10 ; n = (n-n%10)/10 ; ) ; return(resul) ; }
    A069324(maxs)= { local(ssqu,su) ; su=1 ; for(s=1,maxs, ssqu=s^2 ; if (disum(ssqu) > su, su=disum(ssqu) ; if( isprime(su), print1(su,",") ; ) ; ) ; ) ; }
    A069324(200000000) ; \\ R. J. Mathar, May 19 2006

Extensions

a(12) from R. J. Mathar, May 19 2006
a(13)-a(14) from Kevin Buzzard (k.buzzard(AT)imperial.ac.uk), Jun 20 2008
a(15)-a(19) from Giovanni Resta, Jun 27 2018

A040046 Primes p such that x^3 = 6 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 23, 29, 37, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 197, 227, 233, 239, 241, 251, 257, 263, 269, 281, 293, 307, 311, 313, 317, 337, 347, 349
Offset: 1

Views

Author

Keywords

Comments

Complement of A040047 relative to A000040. - Vincenzo Librandi, Sep 13 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(450) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 6}]; // Vincenzo Librandi, Sep 11 2012
  • Mathematica
    ok [p_]:=Reduce[Mod[x^3 - 6, p] == 0, x, Integers] =!= False;  Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
Showing 1-3 of 3 results.