A040069 Primes p such that x^3 = 15 has a solution mod p.
2, 3, 5, 7, 11, 17, 23, 29, 31, 41, 47, 53, 59, 67, 71, 79, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 311, 317, 331, 347, 353
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(450) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 15}]; // Vincenzo Librandi, Sep 11 2012
-
Mathematica
ok [p_]:=Reduce[Mod[x^3 - 15, p] == 0, x, Integers] =!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 11 2012 *)
-
PARI
select(n->ispower(Mod(15, n),3), primes(500)) \\ Charles R Greathouse IV, Sep 11 2012
Comments