A040119 Primes p such that x^4 = 10 has a solution mod p.
2, 3, 5, 31, 37, 41, 43, 53, 67, 71, 79, 83, 107, 151, 163, 173, 191, 199, 227, 239, 241, 271, 277, 283, 307, 311, 317, 347, 359, 397, 431, 439, 443, 467, 479, 523, 547, 563, 587, 599, 613, 631, 641, 643, 683, 719
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A040121 (complement in the primes).
Programs
-
Magma
[p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 10}]; // Vincenzo Librandi, Sep 12 2012
-
Mathematica
ok [p_]:=Reduce[Mod[x^4 - 10, p]== 0, x, Integers]=!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 12 2012 *)
-
PARI
isA040119(p)={r=0;for(m=0,p-1,if(Mod(m,p)^4==Mod(10,p),r=1));r} \\ Michael B. Porter, Oct 13 2009
-
PARI
select( {is_A040119(p)=ispower(Mod(10, p), 4)}, primes(199)) \\ is_A040119(p) assumes that p is prime, else append "&& isprime(p)". - M. F. Hasler, Nov 19 2024
Extensions
Definition corrected by Michael B. Porter, Oct 13 2009