cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040119 Primes p such that x^4 = 10 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 31, 37, 41, 43, 53, 67, 71, 79, 83, 107, 151, 163, 173, 191, 199, 227, 239, 241, 271, 277, 283, 307, 311, 317, 347, 359, 397, 431, 439, 443, 467, 479, 523, 547, 563, 587, 599, 613, 631, 641, 643, 683, 719
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A040121 (complement in the primes).

Programs

  • Magma
    [p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 10}]; // Vincenzo Librandi, Sep 12 2012
  • Mathematica
    ok [p_]:=Reduce[Mod[x^4 - 10, p]== 0, x, Integers]=!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 12 2012 *)
  • PARI
    isA040119(p)={r=0;for(m=0,p-1,if(Mod(m,p)^4==Mod(10,p),r=1));r} \\ Michael B. Porter, Oct 13 2009
    
  • PARI
    select( {is_A040119(p)=ispower(Mod(10, p), 4)}, primes(199)) \\ is_A040119(p) assumes that p is prime, else append "&& isprime(p)". - M. F. Hasler, Nov 19 2024
    

Extensions

Definition corrected by Michael B. Porter, Oct 13 2009