A040136 Primes p such that x^4 = 15 has no solution mod p.
13, 17, 19, 23, 29, 31, 37, 41, 47, 73, 79, 83, 89, 97, 101, 107, 139, 149, 151, 157, 167, 173, 193, 197, 199, 211, 227, 229, 233, 263, 269, 271, 277, 281, 293, 313, 331, 337, 347, 353, 373, 379, 383, 389, 397
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(500) | not exists{x : x in ResidueClassRing(p) | x^4 eq 15} ]; // Vincenzo Librandi, Sep 18 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^4 - 15, p] == 0, x, Integers] == False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 18 2012 *)
-
PARI
is(n)=isprime(n) && !ispower(Mod(15,n),4) \\ Charles R Greathouse IV, Feb 23 2017
Comments