A041805 Denominators of continued fraction convergents to sqrt(423).
1, 1, 2, 7, 30, 97, 127, 224, 9087, 9311, 18398, 64505, 276418, 893759, 1170177, 2063936, 83727617, 85791553, 169519170, 594349063, 2546915422, 8235095329, 10782010751, 19017106080, 771466253951, 790483360031, 1561949613982, 5476332201977, 23467278421890
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 9214, 0, 0, 0, 0, 0, 0, 0, -1).
Programs
-
Magma
I:=[1,1,2,7,30,97,127,224,9087,9311,18398,64505, 276418,893759,1170177,2063936]; [n le 16 select I[n] else 9214*Self(n-8)-Self(n-16): n in [1..50]]; // Vincenzo Librandi, Dec 24 2013
-
Mathematica
Denominator[Convergents[Sqrt[423], 30]] (* Vincenzo Librandi, Dec 24 2013 *)
Formula
G.f.: -(x^14 -x^13 +2*x^12 -7*x^11 +30*x^10 -97*x^9 +127*x^8 -224*x^7 -127*x^6 -97*x^5 -30*x^4 -7*x^3 -2*x^2 -x -1) / ((x^8 -96*x^4 +1)*(x^8 +96*x^4 +1)). - Colin Barker, Nov 25 2013
a(n) = 9214*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Dec 24 2013
Extensions
More terms from Colin Barker, Nov 25 2013