cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042941 Convolution of Catalan numbers A000108 with A038845.

Original entry on oeis.org

1, 13, 110, 765, 4746, 27314, 149052, 781725, 3975730, 19730150, 95973956, 459145778, 2165937060, 10095323460, 46566906872, 212857023069, 965208806082, 4345780250270, 19442667426420, 86489687956518
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A018218(n+1), n >= 0, with A000302 (powers of 4); also convolution of A000346 with A002697.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 16 2014 *)

Formula

a(n) = binomial(n+3, 2)*(4^(n+1) - A000984(n+3)/A000984(2)) / 2.
G.f.: c(x)/(1-4*x)^3, where c(x) is the g.f. for Catalan numbers.
Recurrence: (n+1)*a(n) = 128*(1-2*n)*a(n-4) + 32*(8*n-1)*a(n-3) - 24*(4*n+1)*a(n-2) + 2*(8*n+5)*a(n-1). - Fung Lam, Apr 13 2014
a(n) ~ 2^(2*n)*(n^2 - 8*n^(3/2)/(3*sqrt(Pi))). - Fung Lam, Apr 13 2014
Recurrence: n*(n+1)*a(n) = 2*n*(4*n+9)*a(n-1) - 8*(n+2)*(2*n+3)*a(n-2). - Vaclav Kotesovec, Apr 16 2014