A042978 Stern primes: primes not of the form p + 2b^2 for p prime and b > 0.
2, 3, 17, 137, 227, 977, 1187, 1493
Offset: 1
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 226.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 137, p. 46, Ellipses, Paris 2008.
- L. E. Dickson, History of the theory of Numbers, vol. 1, page 424.
Links
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- L. Hodges, A lesser-known Goldbach conjecture, Math. Mag., 66 (1993), 45-47.
- Mark VandeWettering, Toying with a lesser known Goldbach Conjecture
- Index entries for sequences related to Goldbach conjecture
Crossrefs
Apart from the first term, a subsequence of A060003.
Programs
-
Maple
N:= 10^6: # to check primes up to N P:= select(isprime, {2,seq(i,i=3..N,2)}): S:= {seq(2*b^2,b=1..floor(sqrt(N/2)))}: P minus {seq(seq(p+s,p=P),s=S)}; # Robert Israel, Jan 19 2016
-
Mathematica
fQ[n_] := Block[{k = Floor[ Sqrt[ n/2]]}, While[k > 0 && !PrimeQ[n - 2*k^2], k--]; k == 0]; Select[ Prime[Range[238]], fQ] (* Robert G. Wilson v, Sep 07 2012 *)
-
PARI
forprime( n=1,default(primelimit), for(s=1,sqrtint(n\2), if(isprime(n-2*s^2),next(2)));print(n)) \\ M. F. Hasler, Nov 16 2007
-
PARI
forprime(p=2,4e9,forstep(k=sqrt(p\2),1,-1,if(isprime(p-2*k^2),next(2)));print1(p", ")) \\ Charles R Greathouse IV, Aug 04 2011
Comments