A043281 Maximal run length in base-7 representation of n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1
Links
- Winston de Greef, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Max[Length/@Split[IntegerDigits[#,7]]]&/@Range[100] (* Harvey P. Dale, Mar 30 2016 *)
-
PARI
A043281(n, b=7)={my(m,c=1); while(n>0, n%b==(n\=b)%b&&c++&&next; m=max(m, c); c=1); m} \\ M. F. Hasler, Jul 23 2013
-
Python
from itertools import groupby from sympy.ntheory.factor_ import digits def A043281(n): return max(len(list(g)) for k, g in groupby(digits(n,7)[1:])) # Chai Wah Wu, Mar 09 2023