cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A044940 Number of runs of even length in base-9 representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			From _Antti Karttunen_, Dec 15 2017: (Start)
For n = 810 = 729 + 81 = 9^3 + 9^2 thus in base 9 written as "1100", we count two runs, both of length 2, thus both even, so a(810) = 2.
For n = 32805 = 5*(9^4), thus in base 9 "50000", there is one run of even length, so a(32805) = 1.
For n = 65630 = 1*(9^5) + 1*(9^4) + 0*(9^3) + 0*(9^2) + 2*(9^1) + 2*(9^0) thus written as "110022" in base 9, there are three runs, all of length 2, thus all even, so a(65630) = 3.
(End)
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local i,j,t,Q,d;
    Q:= convert(n,base,9);
    d:= nops(Q);
    i:= 1: t:= 0:
    while i < d do
       for j from i+1 to d while Q[j] = Q[i] do od:
       if (j-i)::even then t:= t+1 fi;
       i:= j;
    od;
    t
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 15 2017
  • Mathematica
    a[n_] := Count[Length /@ Split[IntegerDigits[n, 9]], _?EvenQ];
    Array[a, 120] (* Jean-François Alcover, Dec 16 2017 *)
  • PARI
    A044940(n) = { my(rl=1, d, prev_d = -1, s=0); while(n>0, d = (n%9); n = ((n-d)/9); if(d==prev_d, rl++, s += (1-(rl%2)); prev_d = d; rl = 1)); (s + (1-(rl%2))); }; \\ Antti Karttunen, Dec 15 2017

Extensions

More terms and secondary offset added by Antti Karttunen, Dec 15 2017