cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045315 Primes p such that x^8 = 2 has a solution mod p.

Original entry on oeis.org

2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 257, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039
Offset: 1

Views

Author

Keywords

Comments

Coincides with the sequence of "primes p such that x^16 = 2 has a solution mod p" for first 58 terms (and then diverges).
Complement of A045316 relative to A000040. - Vincenzo Librandi, Sep 13 2012

References

  • A. Aigner, Kriterien zum 8. und 16. Potenzcharakter der Reste 2 und -2, Deutsche Math. 4 (1939), 44-52; FdM 65 - I (1939), 112.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^8 eq 2}]; // Vincenzo Librandi, Sep 13 2012
    
  • Mathematica
    ok[p_] := Reduce[ Mod[x^8-2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200] ], ok] (* Jean-François Alcover, Nov 28 2011 *)
  • PARI
    is(n)=isprime(n) && ispower(Mod(2,n),8) \\ Charles R Greathouse IV, Feb 08 2017