A045315 Primes p such that x^8 = 2 has a solution mod p.
2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 257, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039
Offset: 1
References
- A. Aigner, Kriterien zum 8. und 16. Potenzcharakter der Reste 2 und -2, Deutsche Math. 4 (1939), 44-52; FdM 65 - I (1939), 112.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- H. Hasse, Der 2^n-te Potenzcharakter von 2 im Koerper der 2^n-ten Einheitswurzeln, Rend. Circ. Matem. Palermo (2), 7 (1958), 185-243.
- Franz Lemmermeyer, Bibliography on Reciprocity Laws
- A. L. Whiteman, The sixteenth power residue character of 2, Canad. J. Math. 6 (1954), 364-373; Zbl 55.27102.
- Index entries for related sequences
Programs
-
Magma
[p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^8 eq 2}]; // Vincenzo Librandi, Sep 13 2012
-
Mathematica
ok[p_] := Reduce[ Mod[x^8-2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200] ], ok] (* Jean-François Alcover, Nov 28 2011 *)
-
PARI
is(n)=isprime(n) && ispower(Mod(2,n),8) \\ Charles R Greathouse IV, Feb 08 2017
Comments