cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A119480 Numbers n such that the Bernoulli number B_{4n} has denominator 30.

Original entry on oeis.org

1, 2, 17, 19, 31, 38, 47, 59, 61, 62, 71, 94, 101, 103, 107, 109, 118, 122, 137, 149, 151, 157, 167, 181, 197, 206, 211, 218, 223, 227, 229, 241, 257, 263, 269, 271, 283, 289, 302, 311, 313, 314, 317, 331, 334, 337, 347, 349, 353, 361, 362, 367, 379
Offset: 1

Views

Author

Alexander Adamchuk, Jul 26 2006

Keywords

Comments

Most a(n) are primes from A043297(n) except for a(1) = 1 and composite a(n) for n=6,10,12,17,18,26,28,38,39,42,45,50,51, ... a(6) = 38 = 2*19, a(10) = 62 = 2*31, a(12) = 94 = 2*47, a(17) = 118 = 2*59, a(18) = 122 = 2*61, a(26) = 206 = 2*103, a(28) = 218 = 2*109, a(38) = 289 = 17*17, a(39) = 302 = 2*151, a(42) = 314 = 2*157, a(45) = 334 = 2*167, a(50) = 361 = 19*19, a(51) = 362 = 2*181, ... It appears that most composite a(n) are the doubles of some primes from A043297(n) belonging to A081092[n] and A045404[n] - Primes congruent to {3, 4, 5, 6} mod 7. The rest of composite a(n) are the squares of the primes from A043297(n).
Some a(n) are the products of different primes from A043297(n), for example a(77) = 527 = 17*31. a(n) belong to A045402 Primes congruent to {1, 3, 4, 5, 6} mod 7. a(n) is a subset of A053176 Primes p such that 2p+1 is composite, A045979 Bernoulli number B_{2n} has denominator 6, A090863 Numbers n such that F(n+1)*F(n-1)*B(2n) is an integer, where F(k)=k-th Fibonacci number and B(2k)=2k-th Bernoulli number. - Alexander Adamchuk, Jul 27 2006

Crossrefs

Programs

  • Mathematica
    Select[Range@ 400, Denominator@ BernoulliB[4 #] == 30 &] (* Michael De Vlieger, Aug 09 2017 *)

Formula

a(n) = A051225[n]/2.
Showing 1-1 of 1 results.