cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045492 Convolution of A000108 (Catalan numbers) with A020920.

Original entry on oeis.org

1, 19, 218, 1955, 15086, 105102, 679764, 4154403, 24281510, 136887322, 749032492, 3997228430, 20880823820, 107088473660, 540472210728, 2689562860323, 13217998697430, 64240718824930, 309108505173820
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A042985 with A000984 (central binomial coefficients); also convolution of A045724 with A000302 (powers of 4).

Programs

  • GAP
    List([0..20], n-> Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5))); # G. C. Greubel, Jan 13 2020
  • Magma
    [Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)): n in [0..20]]; // G. C. Greubel, Jan 13 2020
    
  • Maple
    seq(coeff(series((sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
  • Mathematica
    Table[Binomial[n+5, 4]*(Binomial[2*n+10, n+5]/140 - 2^(2*n+3)/(n+5)), {n,0,20}] (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    vector(20, n, binomial(n+4, 4)*(binomial(2*n+8, n+4)/140 - 2^(2*n+1)/(n+4)) ) \\ G. C. Greubel, Jan 13 2020
    
  • Sage
    [binomial(n+5, 4)*(binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)) for n in (0..20)] # G. C. Greubel, Jan 13 2020
    

Formula

a(n) = binomial(n+5, 4)*(A000984(n+5)/A000984(4) - 4^(n+2)/(n+5))/2, A000984(n)=binomial(2*n, n);
G.f.: c(x)/(1-4*x)^(9/2) = (2-c(x))/(1-4*x)^5, where c(x) = g.f. for Catalan numbers.