A045523 Numbers k such that k! has initial digit '4'.
8, 12, 26, 53, 57, 73, 82, 118, 129, 155, 160, 169, 185, 212, 215, 218, 232, 240, 265, 272, 281, 294, 338, 351, 369, 376, 388, 393, 398, 403, 408, 421, 432, 443, 446, 482, 485, 498, 515, 522, 533, 544, 548, 576, 580, 593, 602, 616, 621, 641, 646, 657, 668
Offset: 1
Examples
8 is a term since 8! = 40320 has the initial digit 4.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Sharon Kunoff, N! has the first digit property, The Fibonacci Quarterly, Vol. 25, No. 4 (1987), pp. 365-367.
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
Mathematica
Select[ Range[ 700 ], IntegerDigits[ #! ] [[ 1 ]] == 4 & ]
-
PARI
isok(n) = digits(n!)[1] == 4; \\ Michel Marcus, Feb 07 2017
Formula
A008905(a(n)) = 4. - Amiram Eldar, Jul 17 2020
Comments