A045524 Numbers k such that k! has initial digit '5'.
7, 21, 38, 46, 61, 66, 81, 119, 137, 144, 150, 165, 189, 196, 206, 209, 221, 224, 235, 243, 248, 253, 258, 279, 292, 340, 342, 353, 362, 383, 413, 429, 440, 488, 508, 529, 540, 584, 597, 611, 630, 651, 662, 679, 685, 704, 711, 718, 725, 732, 764, 782, 812
Offset: 1
Examples
7 is a term since 7! = 5040 has the initial digit 5.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Sharon Kunoff, N! has the first digit property, The Fibonacci Quarterly, Vol. 25, No. 4 (1987), pp. 365-367.
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
Maple
filter:= proc(t) local tf; tf:= t!; floor(tf/10^ilog10(tf)) = 5 end proc: select(filter, [$1..1000]); # Robert Israel, Feb 07 2017
-
Mathematica
Select[ Range[ 850 ], IntegerDigits[ #! ] [[1]] == 5 & ]
-
PARI
isok(n) = digits(n!)[1] == 5; \\ Michel Marcus, Feb 08 2017
Formula
A008905(a(n)) = 5. - Amiram Eldar, Jul 17 2020
Comments