cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045530 Convolution of A000108 (Catalan numbers) with A020922.

Original entry on oeis.org

1, 23, 310, 3195, 27866, 216566, 1546028, 10338515, 65635570, 399429602, 2346750900, 13384232030, 74417751940, 404759481420, 2159510136408, 11327603405955, 58528412321250, 298354368109930, 1502525977613540
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A045505 with A000984 (central binomial coefficients); also convolution of A045492 with A000302 (powers of 4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^6) )); // G. C. Greubel, Jan 13 2020
    
  • Maple
    seq(coeff(series((sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^6), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 13 2020
  • Mathematica
    CoefficientList[Series[(Sqrt[1-4*x] +4*x-1)/(2*x*(1-4*x)^6), {x,0,40}], x] (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    my(x='x+O('x^40)); Vec( (sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^6) ) \\ G. C. Greubel, Jan 13 2020
    
  • Sage
    def A045530_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^6) ).list()
    A045530_list(40) # G. C. Greubel, Jan 13 2020

Formula

a(n) = binomial(n+6, 5)*(A000984(n+6)/A000984(5) - 5*4^(n+1)/(n+6))/2, A000984(n) = binomial(2*n, n).
G.f. c(x)/(1-4*x)^(11/2), where c(x) = g.f. for Catalan numbers.