cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045584 Numbers k that divide 4^k + 3^k.

Original entry on oeis.org

1, 7, 49, 343, 2401, 2653, 16807, 18571, 117649, 129997, 823543, 909979, 1005487, 4941601, 5764801, 6369853, 7038409, 34591207, 40353607, 44588971, 49268863, 236474833, 242138449, 282475249, 312122797, 344882041, 381079573, 1655323831, 1694969143, 1872866779, 1977326743
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074605.

Programs

  • Mathematica
    Select[Range[10^6], Divisible[PowerMod[3, #, #] + PowerMod[4, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)
  • PARI
    isok(k) = Mod(4, k)^k + Mod(3, k)^k == 0; \\ Michel Marcus, May 16 2022
  • Python
    from itertools import islice, count
    def A045584_gen(startvalue=1): # generator of terms >= startvalue
        kstart = max(startvalue,1)
        k3, k4 = 3**kstart, 4**kstart
        for k in count(kstart):
            if (k3+k4) % k == 0:
                yield k
            k3 *= 3
            k4 *= 4
    A045584_list = list(islice(A045584_gen(),10)) # Chai Wah Wu, May 16 2022
    

Extensions

a(28)-a(31) from Amiram Eldar, Oct 23 2021