A030526 A convolution triangle of numbers obtained from A036070.
1, 10, 1, 80, 20, 1, 560, 260, 30, 1, 3584, 2720, 540, 40, 1, 21504, 24768, 7480, 920, 50, 1, 122880, 204288, 87552, 15840, 1400, 60, 1, 675840, 1562880, 908352, 225936, 28800, 1980, 70, 1, 3604480, 11264000, 8595200, 2813696, 483920, 47360, 2660, 80
Offset: 1
Examples
1; 10,1; 80,20,1; 560,260,30,1; 3584,2720,540,40,1; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Formula
a(n, m) = 4*(4*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
A046757 Triangle of coefficients of certain polynomials (exponents in decreasing order).
1, 2, 1, 5, 5, 1, 30, 30, 10, 1, 272, 272, 102, 17, 1, 3250, 3250, 1300, 260, 26, 1, 47952, 47952, 19980, 4440, 555, 37, 1, 840350, 840350, 360150, 85750, 12250, 1050, 50, 1, 17039360, 17039360, 7454720, 1863680, 291200, 29120, 1820, 65, 1, 392203458
Offset: 0
Examples
Triangle begins: {1}; {2,1}; {5,5,1}; {30,30,10,1}; {272,272,102,17,1}; .... E.g. third row {5,5,1} corresponds to polynomial q(3,x)= 5*x^2+5*x+1.
Crossrefs
Formula
a(n, n) = 1, a(n, m) = (1+n^2)*binomial(n, m)*n^(n-m-2), n>m >= 0, else 0.
Comments