cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A115124 Number of imprimitive (periodic) 2n-bead black-white reversible complementable necklaces with n black beads.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 1, 7, 3, 14, 1, 40, 1, 86, 15, 257, 1, 797, 1, 2523, 87, 8360, 1, 29218, 13, 101341, 765, 361275, 1, 1300415, 1, 4707969, 8361, 17179436, 97, 63097809, 1, 232615772, 101342, 861726044, 1, 3204597995, 1, 11955836263, 1298641, 44748176654, 1
Offset: 0

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Comments

a(p)=1 for prime p.

Programs

  • Mathematica
    b[n_] := (1/(2n)) DivisorSum[n, EulerPhi[n/#] Binomial[2# - 1, # - 1] + EulerPhi[2(n/#)] 2^(# - 1)&];
    A006840[n_] := If[n == 0, 1, (b[n] + 2^(n - 2) + Binomial[n - Mod[n, 2], Quotient[n, 2]]/2)/2];
    A045633[n_] := If[n==0, 1, Sum[MoebiusMu[n/d] A006840[d], {d, Divisors[n]}] ];
    a[n_] := A006840[n] - A045633[n];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n)=A006840(n) - A045633(n).

Extensions

More terms from Jean-François Alcover, Aug 28 2019
Showing 1-1 of 1 results.