A045656 Number of 2n-bead balanced binary strings, rotationally equivalent to reverse, complement and reversed complement.
1, 2, 6, 8, 22, 32, 48, 100, 150, 260, 336, 684, 784, 1640, 1868, 3728, 4246, 8672, 9372, 19420, 20752, 42736, 45700, 94164, 98832, 204632, 214584, 441764, 460524, 950216, 985968, 2031556, 2101398, 4323888, 4465056, 9174400, 9444988
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
b[n_] := Module[{t = 0, r = n}, If[n == 0, 1, While[Mod[r, 2] == 0, r = r/2; t += 2^(r - 1)]; t + 2^Quotient[r, 2]]]; c[n_] := Sum[MoebiusMu[d]*d, {d, Divisors[n]}]; a[n_] := If[n == 0, 1, 2*Sum[c[n/d]*d*b[d], {d, Divisors[n]}]]; a /@ Range[0, 36] (* Jean-François Alcover, Sep 23 2019, from PARI *)
-
PARI
\\ here b(n) is A045674, c(n) is A023900. b(n) = if(n<1, n==0, my(t=0, r=n); while(r%2==0, r=r/2; t+=2^(r-1)); t + 2^(r\2)); c(n) = {sumdiv(n,d, moebius(d)*d)} a(n) = if(n<1, n==0, 2*sumdiv(n, d, c(n/d)*d*b(d))); \\ Andrew Howroyd, Sep 15 2019
Formula
From Andrew Howroyd, Sep 15 2019: (Start)
Inverse Moebius transform of A045665.