A045663 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to complement.
1, 2, 4, 6, 16, 30, 60, 126, 256, 504, 1020, 2046, 4080, 8190, 16380, 32730, 65536, 131070, 262080, 524286, 1048560, 2097018, 4194300, 8388606, 16776960, 33554400, 67108860, 134217216, 268435440, 536870910, 1073740740, 2147483646
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[n_] := If[n==0, 1, 2n Total[MoebiusMu[#]*2^(n/#)& /@ Select[Divisors[n], OddQ]]/(2n)]; a /@ Range[0, 31] (* Jean-François Alcover, Sep 23 2019 *)
-
PARI
a(n)={if(n<1, n==0, sumdiv(n, d, if(d%2, moebius(d)*2^(n/d))))} \\ Andrew Howroyd, Sep 14 2019
-
Python
from sympy import mobius, divisors def A045663(n): return sum(mobius(d)<
>(~n&n-1).bit_length(),generator=True)) if n else 1 # Chai Wah Wu, Jul 22 2024
Formula
a(n) = Sum{d|n, d odd} mu(d) * 2^(n/d) for n > 0. - Andrew Howroyd, Sep 14 2019