cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A045683 Number of 2n-bead balanced binary necklaces of fundamental period 2n which are equivalent to their reverse, complement and reversed complement.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 7, 8, 14, 15, 31, 30, 63, 63, 123, 128, 255, 252, 511, 510, 1015, 1023, 2047, 2040, 4092, 4095, 8176, 8190, 16383, 16365, 32767, 32768, 65503, 65535, 131061, 131040, 262143, 262143, 524223, 524280, 1048575, 1048509, 2097151
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A045665, A045674, A045680, A011947 (bisection?).

Programs

  • Maple
    A045683 := proc(p)
        option remember ;
        if p = 0 then
            return 1;
        end if;
        a := 2^(floor((p+1)/2)-1) ;
        for d in numtheory[divisors](p) do
            if d >1 and type(d,'odd') then
                a := a-procname(p/d) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A045683(p),p=0..30) ; # [Iglesias eq 12] R. J. Mathar, Apr 15 2024
  • Mathematica
    b[0] = 1; b[n_] := Module[{t = 0, r = n}, While[EvenQ[r], r = Quotient[r, 2]; t += 2^(r-1)]; t + 2^Quotient[r, 2]];
    a[0] = 1; a[n_] :=  DivisorSum[n, MoebiusMu[n/#]*b[#]&];
    Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Sep 30 2017, after Andrew Howroyd *)
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, if(d%2, moebius(d)*2^((n/d-1)\2))))} \\ Andrew Howroyd, Oct 01 2019

Formula

Moebius transform of A045674. - Andrew Howroyd, Sep 29 2017
From Andrew Howroyd, Oct 02 2019: (Start)
a(n) = Sum_{d|n, d odd} mu(d) * 2^floor((n/d-1)/2) for n > 0.
G.f.: 1 + Sum_{k>0} mu(2*k-1)*x^(2*k-1)*(1 + x^(2*k-1))/(1 - 2*x^(4*k-2)).
(End)

A045656 Number of 2n-bead balanced binary strings, rotationally equivalent to reverse, complement and reversed complement.

Original entry on oeis.org

1, 2, 6, 8, 22, 32, 48, 100, 150, 260, 336, 684, 784, 1640, 1868, 3728, 4246, 8672, 9372, 19420, 20752, 42736, 45700, 94164, 98832, 204632, 214584, 441764, 460524, 950216, 985968, 2031556, 2101398, 4323888, 4465056, 9174400, 9444988
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := Module[{t = 0, r = n}, If[n == 0, 1,  While[Mod[r, 2] == 0, r = r/2; t += 2^(r - 1)]; t + 2^Quotient[r, 2]]];
    c[n_] := Sum[MoebiusMu[d]*d, {d, Divisors[n]}];
    a[n_] := If[n == 0, 1, 2*Sum[c[n/d]*d*b[d], {d, Divisors[n]}]];
    a /@ Range[0, 36] (* Jean-François Alcover, Sep 23 2019, from PARI *)
  • PARI
    \\ here b(n) is A045674,  c(n) is A023900.
    b(n) = if(n<1, n==0, my(t=0, r=n); while(r%2==0, r=r/2; t+=2^(r-1)); t + 2^(r\2));
    c(n) = {sumdiv(n,d, moebius(d)*d)}
    a(n) = if(n<1, n==0, 2*sumdiv(n, d, c(n/d)*d*b(d))); \\ Andrew Howroyd, Sep 15 2019

Formula

From Andrew Howroyd, Sep 15 2019: (Start)
Inverse Moebius transform of A045665.
a(n) = 2*Sum_{d|n} A023900(n/d)*d*A045674(d) for n > 0. (End)

A045668 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to complement, inequivalent to reverse and reversed complement.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 24, 28, 128, 252, 720, 1364, 3360, 6552, 14616, 29040, 61440, 122400, 253008, 504868, 1028160, 2054388, 4149288, 8294444, 16679040, 33349800, 66895920, 133775712, 267976800, 535920696, 1072758840, 2145452092
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

It seems that a(n) = 4*n*A011948(n). - Ralf Stephan, Aug 30 2003
From Andrew Howroyd, Sep 14 2019: (Start)
a(n) = 2*n*A045686(n).
a(n) = A045663(n) - A045665(n). (End)

A045669 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reversed complement, inequivalent to reverse and complement.

Original entry on oeis.org

0, 0, 0, 12, 32, 120, 288, 784, 1792, 4284, 9600, 21824, 47520, 104832, 225792, 487260, 1040384, 2219520, 4699296, 9942016, 20930400, 43994748, 92184576, 192843776, 402451200, 838655400, 1744404480, 3623423328, 7515275040
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2*n*A045687(n).
a(n) = A045664(n) - A045665(n). - Andrew Howroyd, Sep 14 2019

A045666 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally inequivalent to reverse, complement and reversed complement.

Original entry on oeis.org

0, 0, 0, 0, 0, 80, 384, 2352, 9856, 42840, 169280, 676720, 2630688, 10265216, 39777248, 154498200, 599556096, 2330826752, 9068386320, 35332969392, 137817005440, 538204062984, 2103970896544, 8233197139552, 32247052083840
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2*n*A045684(n).
a(n) = A007727(n) - A045662(n) - A045663(n) - A045664(n) + 2*A045665(n). - Andrew Howroyd, Sep 14 2019

A045667 Number of 2n-bead balanced binary strings of fundamental period 2n, rotationally equivalent to reverse, inequivalent to complement and reversed complement.

Original entry on oeis.org

0, 0, 0, 0, 16, 20, 168, 168, 896, 972, 4600, 4840, 20880, 22360, 93744, 99060, 405504, 428876, 1738080, 1828104, 7359600, 7716240, 30982864, 32355664, 129654144, 135002900, 540570160, 561187116, 2245878544, 2325812528
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2*n*A045685(n).
a(n) = A045662(n) - A045665(n). - Andrew Howroyd, Sep 14 2019
Showing 1-6 of 6 results.