A045671 Extension of Beatty sequence; complement of A045672.
0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 69, 70
Offset: 0
Keywords
Links
- Shiri Artstein-avidan, Aviezri S. Fraenkel and Vera T. Sós, A two-parameter family of an extension of Beatty sequences, Discrete Math., 308 (2008), 4578-4588. doi:10.1016/j.disc.2007.08.070
- A. S. Fraenkel, Heap games, numeration systems and sequences, Annals of Combinatorics, 2 (1998), 197-210.
- A. S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
- A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
s=2; t=2; mex:=First[Complement[Range[1,Max[#1]+1],#1]]&; a[0]=0; b[n_]:=b[n]=s*a[n]+t*n; a[n_]:=a[n]=mex[Flatten[Table[{a[i],b[i]},{i,0,n-1}]]]; Table[a[n],{n,200}] (* A045671 *) Table[b[n],{n,200}] (* A045672 *) (* Clark Kimberling, Apr 02 2011 *) s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 1, 1, 0}}] &, {0}, 10]; (* A285671 *) Flatten[Position[s, 0]]; (* A045672 *) Flatten[Position[s, 1]]; (* A045671 *) (* - Clark Kimberling, May 02 2017 *)
Formula
a(n) = mex{a(i), b(i):0 <= iA045672, mex S=least integer >= 0 not in sequence S.
a(n) = (1+sqrt(17))/4*n+O(1). - Benoit Cloitre, Apr 23 2008
Comments