A045684 Number of 2n-bead balanced binary necklaces of fundamental period 2n which are inequivalent to their reverse, complement and reversed complement.
0, 0, 0, 0, 0, 8, 32, 168, 616, 2380, 8464, 30760, 109612, 394816, 1420616, 5149940, 18736128, 68553728, 251899620, 929814984, 3445425136, 12814382452, 47817520376, 178982546512, 671813585080, 2528191984496, 9536849432000
Offset: 0
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..100
- Index entries for sequences related to Lyndon words
Programs
-
Mathematica
a22553[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d]*Binomial[2d, d], {d, Divisors[n]}]/(2n)]; a45680[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[n/#] Binomial[# - Mod[#, 2], Quotient[#, 2]] &]]; a48[n_] := If[n == 0, 1, Total[MoebiusMu[#]*2^(n/#)& /@ Select[Divisors[n], OddQ]]/(2n)]; a740[n_] := Sum[MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}]; b[n_] := Module[{t = 0, r = n}, If[n == 0, 1, While[EvenQ[r], r = Quotient[r, 2]; t += 2^(r - 1)]]; t + 2^Quotient[r, 2]]; a45683[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[n/#]*b[#] &]]; a[n_] := If[n == 0, 0, a22553[n] - a45680[n] - a48[n] - a740[n] + 2 a45683[n]]; a /@ Range[0, 100] (* Jean-François Alcover, Sep 23 2019 *)
Comments