cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045684 Number of 2n-bead balanced binary necklaces of fundamental period 2n which are inequivalent to their reverse, complement and reversed complement.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 32, 168, 616, 2380, 8464, 30760, 109612, 394816, 1420616, 5149940, 18736128, 68553728, 251899620, 929814984, 3445425136, 12814382452, 47817520376, 178982546512, 671813585080, 2528191984496, 9536849432000
Offset: 0

Views

Author

Keywords

Comments

The number of length 2n balanced binary Lyndon words is A022553(n) and the number which are equivalent to their reverse, complement and reversed complement are respectively A045680(n), A000048(n) and A000740(n). - Andrew Howroyd, Sep 29 2017

Crossrefs

Programs

  • Mathematica
    a22553[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d]*Binomial[2d, d], {d, Divisors[n]}]/(2n)];
    a45680[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[n/#] Binomial[# - Mod[#, 2], Quotient[#, 2]] &]];
    a48[n_] := If[n == 0, 1, Total[MoebiusMu[#]*2^(n/#)& /@ Select[Divisors[n], OddQ]]/(2n)];
    a740[n_] := Sum[MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}];
    b[n_] := Module[{t = 0, r = n}, If[n == 0, 1, While[EvenQ[r], r = Quotient[r, 2]; t += 2^(r - 1)]]; t + 2^Quotient[r, 2]];
    a45683[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[n/#]*b[#] &]];
    a[n_] := If[n == 0, 0, a22553[n] - a45680[n] - a48[n] - a740[n] + 2 a45683[n]];
    a /@ Range[0, 100] (* Jean-François Alcover, Sep 23 2019 *)

Formula

From Andrew Howroyd, Sep 28 2017: (Start)
Moebius transform of A045675.
a(n) = A022553(n) - A045680(n) - A000048(n) - A000740(n) + 2*A045683(n).
(End)