cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045720 3-fold convolution of A001700(n), n >= 0.

Original entry on oeis.org

1, 9, 57, 312, 1578, 7599, 35401, 161052, 719790, 3173090, 13836426, 59803104, 256596276, 1094249019, 4642178601, 19605872724, 82483419846, 345839048094, 1445715336366, 6027524015664, 25070662980876, 104056307673654
Offset: 0

Views

Author

Keywords

Comments

Total number of 132 (or 213) patterns in the set of all 123-avoiding permutations of length (n+3). - Cheyne Homberger, Mar 16 2012
a(n) is the degree of the cyclic graphical Gaussian model for the (n+3) cycle. - Mateusz Michalek, Mar 04 2023

References

  • B. Sturmfels, and C. Uhler. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry. Annals of the Institute of Statistical Mathematics 62.4 (2010): 603-638, Conjecture 2 proved in "Geometry of the Gaussian graphical model of the cycle"

Crossrefs

Programs

  • Mathematica
    Table[(n+5)*Binomial[2*(n+3),n+3]/4-3*2^(2n+3),{n,0,21}] (* Indranil Ghosh, Feb 18 2017 *)
  • PARI
    x='x+O('x^30); Vec((((1-4*x)^(-1/2)-1)/(2*x))^3) \\ Altug Alkan, Sep 04 2018
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A045720(n):
        return (n+5)*C(2*(n+3),n+3)/4-3*2**(2*n+3) # Indranil Ghosh, Feb 18 2017
    

Formula

a(n) = (n+5)*binomial(2*(n+3), n+3)/4 - 3*2^(2*n+3);
G.f.: (c(x)/sqrt(1-4*x))^3, where c(x) = g.f. for Catalan numbers A000108;
recursion: a(n)=(2*(2*n+7)/(n+3))*a(n-1)+(3/(n+3))*A008549(n+1), a(0)=1.