cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A094040 Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k edges.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 14, 12, 1, 10, 40, 75, 55, 1, 15, 90, 275, 429, 273, 1, 21, 175, 770, 1911, 2548, 1428, 1, 28, 308, 1820, 6370, 13328, 15504, 7752, 1, 36, 504, 3822, 17640, 51408, 93024, 95931, 43263, 1, 45, 780, 7350, 42840, 162792, 406980, 648945, 600875, 246675
Offset: 1

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Comments

T(n,n-1) yields A001764; T(n,n-2) yields A026004.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   3;
  1,  6,  14,  12;
  1, 10,  40,  75,   55;
  1, 15,  90, 275,  429,  273;
  1, 21, 175, 770, 1911, 2548, 1428;
  ...
T(3,1)=3 because the noncrossing forests on 3 vertices A,B,C and having one edge are (A, BC), (B, CA) and (C, AB).
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n-1 then binomial(n,k+1)*binomial(n+2*k-1,k)/(n+k) else 0 fi end: seq(seq(T(n,k),k=0..n-1),n=1..11);
  • Mathematica
    T[n_, k_] := Binomial[n, k+1] Binomial[n+2k-1, k]/(n+k);
    Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
  • PARI
    T(n,k)=binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k);
    for(n=1, 10, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n, k)=binomial(n, k+1)*binomial(n+2k-1, k)/(n+k) (0<=k<=n-1).
Showing 1-1 of 1 results.