A045759 Maris-McGwire numbers: numbers k such that f(k) = f(k+1), where f(k) = sum of digits of k + sum of digits of prime factors of k (including multiplicities).
7, 14, 43, 50, 61, 63, 67, 80, 84, 118, 122, 134, 137, 163, 196, 212, 213, 224, 241, 273, 274, 277, 279, 283, 351, 352, 373, 375, 390, 398, 421, 457, 462, 474, 475, 489, 495, 510, 516, 523, 526, 537, 547, 555, 558, 577, 584, 590, 592, 616, 638, 644, 660, 673, 687, 691
Offset: 1
Examples
(61, 62) is such a pair, hence the name.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Mike Keith, Maris-McGwire-Sosa Numbers, 1998.
- Ivars Peterson, Home Run Numbers, MathTrek, 1998.
- Wikipedia, Maris-McGwire-Sosa pair.
Programs
-
Mathematica
ds[n_] := Plus @@ IntegerDigits[n]; f[n_] := ds[n] + Total[(fi = FactorInteger[n])[[;; , 2]] *( ds /@fi[[;; , 1]])]; s={}; f1 = 1; Do[f2=f[n]; If[f1 == f2, AppendTo[s, n-1]]; f1 = f2, {n, 2, 700}]; s (* Amiram Eldar, Nov 24 2019 *)
-
Python
from sympy import factorint def sd(n): return sum(map(int, str(n))) def f(n): return sd(n) + sum(sd(p)*e for p, e in factorint(n).items()) def ok(n): return f(n) == f(n+1) print(list(filter(ok, range(692)))) # Michael S. Branicky, Jul 14 2021
Extensions
Corrected and extended by David W. Wilson
Offset corrected by Amiram Eldar, Nov 24 2019
Comments