cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045761 Define polynomials Pn by P0 = 0, P1 = x, P2 = P1 + P0, P3 = P2 * P1, P4 = P3 + P2, etc. alternately adding or multiplying. For even n > 2k, then first k coefficients of Pn remain unchanged and their values are the first k terms of the sequence.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 12, 24, 50, 107, 232, 508, 1124, 2513, 5665, 12858, 29356, 67371, 155345, 359733, 836261, 1950829, 4565305, 10714501, 25212843, 59474318, 140609809, 333126672, 790764280, 1880489541, 4479494059, 10687448937, 25536624382, 61102431113
Offset: 0

Views

Author

James Boudinot (jboudinot(AT)yahoo.com)

Keywords

Examples

			The sequence of polynomials is 0, x, x, x^2, x^2 + x, x^4 + x^3, x^4 + x^3 + x^2 + x, ..., and after this all the even polynomials end with x^3 + x^2 + x (+ 0), so the first 4 terms of the sequence are these coefficients (in ascending order): 0, 1, 1, 1. - _Michael B. Porter_, Aug 09 2016
		

Crossrefs

Programs

  • Mathematica
    k = 32; P[0] = 0; P[1] = x;
    P[n_] := P[n] = If[EvenQ[n], P[n-1] + P[n-2], P[n-1]*P[n-2]] + O[x]^(2k+1) // Normal;
    CoefficientList[P[2k], x][[1 ;; k+1]] (* Jean-François Alcover, Aug 07 2016 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.50297436517909273228379630... and c = 0.34042564735836570861482... . - Vaclav Kotesovec, Aug 08 2016, updated Aug 27 2016
Conjecture: 1/d = 0.39952466709679946... = A268107. - Jean-François Alcover, Aug 08 2016

Extensions

More terms from Michael Somos, May 19 2000