cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045771 Number of similar sublattices of index n^2 in root lattice D_4.

Original entry on oeis.org

1, 1, 8, 1, 12, 8, 16, 1, 41, 12, 24, 8, 28, 16, 96, 1, 36, 41, 40, 12, 128, 24, 48, 8, 97, 28, 176, 16, 60, 96, 64, 1, 192, 36, 192, 41, 76, 40, 224, 12, 84, 128, 88, 24, 492, 48, 96, 8, 177, 97, 288, 28, 108, 176, 288, 16, 320, 60, 120, 96, 124, 64, 656, 1
Offset: 1

Views

Author

Michael Baake (baake(AT)miles.math.ualberta.ca)

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> If[1 <= p <= 2, 1, (e + 1) p^e + (2 (1 + (e p - e - 1)*p^e))/((p - 1)^2)]] &, 64] (*  Michael De Vlieger, Mar 02 2018 *)
  • PARI
    fp(p, e) = if (p % 2, (e+1)*p^e + 2*(1-(e+1)*p^e+e*p^(e+1))/(p-1)^2, 1);
    a(n) = { my(f = factor(n)); prod(i=1, #f~, fp(f[i, 1], f[i, 2]));} \\ Michel Marcus, Mar 03 2014

Formula

Multiplicative with a(2^p) = 1, a(p^e) = (e+1)*p^e + (2*(1+(e*p-e-1)*p^e))/((p-1)^2), p>2. - Christian G. Bower, May 21 2005
From Amiram Eldar, May 26 2025: (Start)
Dirichlet g.f.: (zeta(s-1)^2 * zeta(s)^2 / zeta(2*s)) * (1 - 1/2^(s-1))^2/(1 + 1/2^s).
Sum_{k=1..n} a(k) ~ (n^2/4)*(log(n) + 2*gamma - 1/2 + 11*log(2)/5 + 2*zeta'(2)/zeta(2) - 2*zeta'(4)/zeta(4)), where gamma is Euler's constant (A001620). (End)

Extensions

More terms from Michel Marcus, Mar 03 2014