cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A045796 Numbers m = usigma(sigma(k))/k such that usigma(sigma(k)) is divisible by k.

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 5, 2, 3, 4, 2, 2, 4, 4, 2, 2, 4, 7, 4, 6, 3, 4, 5, 3, 4, 5, 4, 5, 3, 4, 4, 2, 5, 4, 6, 4, 8, 7, 6, 4, 5, 3, 2, 4, 5, 7, 7, 4, 4, 2, 9, 5, 5, 4, 8, 4, 4, 4, 8, 7, 4, 4, 4, 5, 6, 4, 8, 5, 8, 8, 6, 4, 6, 4, 5, 6, 4, 4, 4, 8, 5, 4, 6, 5, 8, 7, 5
Offset: 1

Views

Author

Keywords

Comments

a(n) = m values in A045795. - Donovan Johnson, Mar 12 2013

Crossrefs

Programs

  • Maple
    A034448 := proc(n) local ans, i: ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[2][i][1]^ifactors(n)[2][i][2]): od: RETURN(ans) end: isA045795 := proc(n) if A034448(numtheory[sigma](n)) mod n = 0 then A034448(numtheory[sigma](n))/n ; else -1 ; fi ; end: A045796 := proc() local n,a : n := 2: while true do a := isA045795(n) ; if a>=0 then printf("%d, ",a) ; fi ; n := n+1: od : end: A045796() ; # R. J. Mathar, Jun 26 2007
  • Mathematica
    s[n_] := Times @@ (1 + Power @@@ FactorInteger[DivisorSigma[1, n]])/n; s[1] = 1; Select[s /@ Range[10^6], IntegerQ] (* Amiram Eldar, Aug 26 2022 *)

Formula

a(n) = usigma(sigma(A045795(n)))/A045795(n).

Extensions

Corrected and extended by R. J. Mathar, Jun 26 2007
Missing first term added and offset corrected by Donovan Johnson, Mar 12 2013

A083288 Sigma unitary-sigma perfect numbers: numbers m which satisfy the following equation for some integer k: sigma(usigma(m)) = k*m where usigma(m) is sum of unitary divisors of m.

Original entry on oeis.org

1, 2, 9, 15, 18, 21, 40, 42, 60, 104, 120, 288, 312, 756, 1023, 1170, 2160, 2520, 3024, 4092, 6048, 6552, 8184, 17850, 18720, 29127, 30690, 40768, 58254, 79794, 147312, 285600, 491040, 507780, 556920, 932064, 1276704, 1966020, 3300570, 4134780, 4194288, 4470648
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Examples

			9 is in the sequence since usigma(9) = 10 and sigma(10) = 18 = 2 * 9 is divisible by 9.
		

Crossrefs

Programs

  • Mathematica
    usigma[1]=1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[ Range[10^4], Divisible[DivisorSigma[1, usigma[#]], #] & ] (* Amiram Eldar, Jul 02 2019 *)

Extensions

More terms from Amiram Eldar, Jul 02 2019
Showing 1-2 of 2 results.