A045817 Numbers n written in base 7, where in the list of divisors of n (in base 7), each digit 0-6 appears equally often.
3602, 246506, 264533, 266405, 303652, 320556, 324255, 325605, 342560, 345064, 345406, 345604, 346340, 362055, 414056, 430462, 434630, 435065, 436430, 436550, 453605, 500426, 500641, 506022, 524360, 524406, 526433, 530632, 532650, 533402
Offset: 1
Examples
E.g., divisors of 342560 (base 7) are (1,2,10,20,15463,34256,154630,342560) (all in base 7); the numbers of digits (0-6) are [0(4),1(4),2(4),3(4),4(4),5(4),6(4)].
Links
- Robert Israel, Table of n, a(n) for n = 1..161
- N. Nomoto, In the list of divisors of n,... [broken link]
Programs
-
Maple
N:= 7^6: cv7:= proc(n) local L; L:= convert(n,base,7); add(L[i]*10^(i-1),i=1..nops(L)) end proc: V:= Matrix(N,7,datatype=integer[8]): count:= 0: Res:= NULL: for i from 1 to N do L:= convert(i,base,7); M:= Vector[row]([seq(numboccur(d,L),d=0..6)],datatype=integer[8]); for r from i to N by i do V[r,..]:= V[r,..] + M od; if nops(convert(V[i,..],set))=1 then count:= count+1; w:= cv7(i); Res:= Res,w; fi od: Res; # Robert Israel, Sep 07 2018
Extensions
Definition clarified by Robert Israel, Sep 07 2018