cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A045822 a(n) = A045820(n)/2.

Original entry on oeis.org

1, 12, 62, 184, 373, 644, 1110, 1768, 2482, 3452, 4768, 6056, 7815, 10296, 12294, 14816, 18736, 21648, 25246, 30728, 34362, 39780, 47702, 52176, 59113, 68696, 74318, 83960, 95952, 102356
Offset: 0

Views

Author

Keywords

A291124 Expansion of phi(x)^6 * phi(-x)^2 in powers of x where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 8, 16, -32, -144, -16, 448, 192, -912, -88, 2016, -352, -4032, 176, 5504, 64, -7056, 400, 12112, 352, -18144, -768, 21312, -448, -25536, -968, 35168, 1216, -49536, 1584, 56448, -1280, -56208, 1408, 78624, -384, -109008, -1296, 109760, -704, -114912, -1584
Offset: 0

Views

Author

Michael Somos, Aug 17 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)

Examples

			G.f. = 1 + 8*x + 16*x^2 - 32*x^3 - 144*x^4 - 16*x^5 + 448*x^6 + 192*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 4), 42); A[1] + 8*A[2] + 16*A[3] - 32*A[4] - 144*A[5] - 16*A[6] + 448*A[7] + 192*A[8] - 912*A[9];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^6 EllipticTheta[ 4, 0, x]^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[x^2]^7 / (QPochhammer[ x]^2 QPochhammer[ x^4]^3))^4, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3))^4, n))};
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec((eta(q^2)^7/(eta(q)^2*eta(q^4)^3))^4)} \\ Altug Alkan, Mar 21 2018
    

Formula

Expansion of (eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3))^4 in powers of q.
Euler transform of period 4 sequence [8, -20, 8, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 512 (t/i)^4 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A045820.
G.f.: Product_{k>0} (1 - x^(2*k))^28 / ((1 - x^k)^8 * (1 - x^(4*k))^12).
a(2*n + 1) = 8 * A030211(n). a(4*n + 2) = 16 * A045823(n).
a(2*n) = 16 * (-1)^n * (-sigma_3(n) + sigma_3(n/4)) where sigma_3(n) is the sum of the cubes of the divisors of n if n is an integer else 0.
Convolution square of A207541.
Showing 1-2 of 2 results.