cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A263433 Expansion of f(x, x) * f(x^2, x^4)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 2, 4, 5, 6, 6, 4, 7, 4, 6, 8, 4, 10, 8, 12, 8, 6, 14, 8, 11, 6, 8, 8, 8, 14, 6, 12, 15, 14, 14, 8, 12, 14, 12, 16, 8, 10, 14, 16, 16, 12, 12, 12, 16, 10, 10, 8, 19, 20, 20, 8, 12, 24, 14, 24, 12, 16, 14, 16, 21, 10, 14, 28, 16, 12, 14, 12, 16, 16, 30, 12
Offset: 0

Views

Author

Michael Somos, Oct 18 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 6*x^6 + 4*x^7 + 7*x^8 + ...
G.f. = q + 2*q^7 + 2*q^13 + 4*q^19 + 5*q^25 + 6*q^31 + 6*q^37 + 4*q^43 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 EllipticTheta[ 4, 0, x^6]^2 / EllipticTheta[ 4, 0, x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^6 + A)^4 / (eta(x + A)^2 * eta(x^12 + A)^2), n))};

Formula

Expansion of f(-x^2)^2 * phi(-x^6)^2 / phi(-x) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(-1/6) * eta(q^2)^3 * eta(q^6)^4 / (eta(q)^2 * eta(q^12)^2) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 15552^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A263444.
a(n) = A261426(2*n) = A045832(6*n). 3 * a(n) = A005889(6*n).
Showing 1-1 of 1 results.