cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045894 4-fold convolution of A001700(n), n >= 0.

Original entry on oeis.org

1, 12, 94, 608, 3525, 19044, 97954, 486000, 2345930, 11081880, 51447036, 235454848, 1064832173, 4767347796, 21160397050, 93223960784, 408037319262, 1775744775592, 7688699122724, 33140226601920, 142262721338146
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n + 11)*4^(n + 2) - (n + 5) Binomial[2 (n + 4), n + 4]/2, {n, 0, 20}] (* Michael De Vlieger, Feb 18 2017 *)
  • Python
    import math
    def C(n,r):
        f=math.factorial
        return f(n)/f(r)/f(n-r)
    def A045894(n):
        return (n+11)*4**(n+2)-(n+5)*C(2*(n+4),(n+4))/2 # Indranil Ghosh, Feb 18 2017

Formula

a(n) = (n+11)*4^(n+2) - (n+5)*binomial(2*(n+4), n+4)/2;
G.f.: c(x)^4/(1-4*x)^2, where c(x) = g.f. for Catalan numbers A000108;
recursion: a(n)= (2*(2*n+10)/(n+4))*a(n-1) + (4/(n+4))*A045720(n), a(0)=1.