cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045900 Hypothetical numbers of terms in general expressions for coefficients of Lovelock Lagrangians.

Original entry on oeis.org

1, 1, 3, 8, 25, 85, 318, 1234, 4884, 19458, 77727, 310761, 1242853, 4971151, 19884270, 79536639, 318145993, 1272583241, 5090332042, 20361326983, 81445306447, 325781223902, 1303124893253, 5212499570050, 20849998276525, 83399993101506, 333599972400353
Offset: 0

Views

Author

C. C. Briggs (ccb104(AT)psu.edu)

Keywords

Comments

Hypothetical extension of sequence A006372.

Crossrefs

Programs

  • Mathematica
    p = PartitionsP;
    a[n_] := a[n] = If[n < 4, {1, 1, 3, 8}[[n+1]], a[n-3] - 3*a[n-2] + 3*a[n-1] - p[n-3] + 3*p[n-2] - 3*p[n-1] + p[n] + 2^(2*(n-3) + 1)];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 24 2019 *)

Formula

a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) + p(n+3) - 3*p(n+2) + 3*p(n+1) - p(n) + 2^(2*n + 1); a(n+4) = 7*a(n+3) - 15*a(n+2) + 13*a(n+1) - 4*a(n) + p(n+4) - 7*p(n+3) + 15*p(n+2) - 13*p(n+1) + 4*p(n); where p(n) is the partition function (i.e. number of partitions of n, A000041) and where p(0) = 1.
a(n) ~ 2^(2*n+1) / 27. - Vaclav Kotesovec, Jul 05 2025

Extensions

More terms from Jean-François Alcover, Feb 24 2019