A045902 Catafusenes (see reference for precise definition).
1, 4, 18, 80, 355, 1580, 7066, 31772, 143645, 652860, 2981910, 13682328, 63046776, 291646860, 1353967250, 6306552800, 29464361530, 138045441260, 648449195350, 3053348997200, 14409512770575, 68143962854836, 322886537205062, 1532716400556220, 7288075248828605, 34710221395625380
Offset: 0
Keywords
References
- S. J. Cyvin et al., Enumeration and classification of certain polygonal systems... : annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Maple
a := n->(4/n)*sum(binomial(n,j)*binomial(2*j+3,j-1),j=1..n): 1,seq(a(n),n=1..22);
-
Mathematica
Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+5*x^2])^4/(16*x^4),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
PARI
x='x+O('x^66); Vec((1-x-sqrt(1-6*x+5*x^2))^4/(16*x^4)) \\ Joerg Arndt, May 04 2013
Formula
G.f.: (1 - x - sqrt(1-6*x+5*x^2))^4/(16*x^4). - Emeric Deutsch, Mar 13 2004
a(n) = (4/n)*Sum_{j=1..n} binomial(n, j)*binomial(2j+3, j-1) for n >= 1. - Emeric Deutsch, Mar 25 2004
Recurrence: (n+1)*(n+4)*a(n) = (6*n^2+19*n+19)*a(n-1) - 5*(n-2)*(n+2)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 16*5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
Extensions
More terms from Emeric Deutsch, Mar 13 2004
Comments