cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045902 Catafusenes (see reference for precise definition).

Original entry on oeis.org

1, 4, 18, 80, 355, 1580, 7066, 31772, 143645, 652860, 2981910, 13682328, 63046776, 291646860, 1353967250, 6306552800, 29464361530, 138045441260, 648449195350, 3053348997200, 14409512770575, 68143962854836, 322886537205062, 1532716400556220, 7288075248828605, 34710221395625380
Offset: 0

Views

Author

Keywords

Comments

4-fold convolution of A002212. Convolution of A045868 with itself. - Emeric Deutsch, Mar 13 2004

References

  • S. J. Cyvin et al., Enumeration and classification of certain polygonal systems... : annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.

Crossrefs

Programs

  • Maple
    a := n->(4/n)*sum(binomial(n,j)*binomial(2*j+3,j-1),j=1..n): 1,seq(a(n),n=1..22);
  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+5*x^2])^4/(16*x^4),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-x-sqrt(1-6*x+5*x^2))^4/(16*x^4)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1 - x - sqrt(1-6*x+5*x^2))^4/(16*x^4). - Emeric Deutsch, Mar 13 2004
a(n) = (4/n)*Sum_{j=1..n} binomial(n, j)*binomial(2j+3, j-1) for n >= 1. - Emeric Deutsch, Mar 25 2004
Recurrence: (n+1)*(n+4)*a(n) = (6*n^2+19*n+19)*a(n-1) - 5*(n-2)*(n+2)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 16*5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012

Extensions

More terms from Emeric Deutsch, Mar 13 2004