cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A370695 G.f. A(x) satisfies A(x) = (1 + x*A(x)^(3/4) / (1-x))^4.

Original entry on oeis.org

1, 4, 22, 128, 777, 4872, 31330, 205560, 1370868, 9266104, 63343006, 437183260, 3042337215, 21323543252, 150395596016, 1066637271424, 7602188660799, 54422262148632, 391146728466980, 2821396586367568, 20417766975784066, 148200184917042112
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2024

Keywords

Crossrefs

Programs

  • Maple
    A370695 := proc(n)
        4*add(binomial(n-1,n-k)*binomial(3*k+4,k)/(3*k+4),k=0..n) ;
    end proc:
    seq(A370695(n),n=0..80) ; #R. J. Mathar, Oct 24 2024
  • PARI
    a(n) = 4*sum(k=0, n, binomial(n-1, n-k)*binomial(3*k+4, k)/(3*k+4));

Formula

a(n) = 4 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(3*k+4,k)/(3*k+4).
G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A307678.
a(n) ~ 9 * 31^(n + 1/2) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Mar 29 2024
D-finite with recurrence 2*(n+2)*(2*n+3)*a(n) +(-55*n^2-74*n-15)*a(n-1) +6*(37*n^2-46*n-4)*a(n-2) -(295*n-319)*(n-3)*a(n-3) +124*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Oct 24 2024
Showing 1-1 of 1 results.