A045992 a(n) = binomial(2n,n) - n; number of (weakly) increasing or decreasing maps from 1,...,n to 1,...,n.
1, 1, 4, 17, 66, 247, 918, 3425, 12862, 48611, 184746, 705421, 2704144, 10400587, 40116586, 155117505, 601080374, 2333606203, 9075135282, 35345263781, 137846528800, 538257874419, 2104098963698, 8233430727577, 32247603683076
Offset: 0
Keywords
Examples
a(3)=17 since can map (1,2,3) to (1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,1,1), (2,2,1), (2,2,2), (2,2,3), (2,3,3), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), or (3,3,3) but not for example to (1,3,2).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Binomial[2n,n]-n,{n,0,30}] (* or *) CoefficientList[Series[ (x^2- (Sqrt[1-4 x]+2) x+1)/(Sqrt[1-4 x] (x-1)^2),{x,0,30}],x] (* Harvey P. Dale, Apr 18 2014 *)
Formula
G.f.: (x^2 - (sqrt(1-4*x)+2)*x + 1)/(sqrt(1-4*x)*(x-1)^2). - Harvey P. Dale, Apr 18 2014
D-finite with recurrence: n*a(n) + (-7*n+5)*a(n-1) + 3*(5*n-8)*a(n-2) + (-13*n+33)*a(n-3) + 2*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jan 28 2020