cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045992 a(n) = binomial(2n,n) - n; number of (weakly) increasing or decreasing maps from 1,...,n to 1,...,n.

Original entry on oeis.org

1, 1, 4, 17, 66, 247, 918, 3425, 12862, 48611, 184746, 705421, 2704144, 10400587, 40116586, 155117505, 601080374, 2333606203, 9075135282, 35345263781, 137846528800, 538257874419, 2104098963698, 8233430727577, 32247603683076
Offset: 0

Views

Author

Keywords

Examples

			a(3)=17 since can map (1,2,3) to (1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,1,1), (2,2,1), (2,2,2), (2,2,3), (2,3,3), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), or (3,3,3) but not for example to (1,3,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n]-n,{n,0,30}] (* or *) CoefficientList[Series[ (x^2- (Sqrt[1-4 x]+2) x+1)/(Sqrt[1-4 x] (x-1)^2),{x,0,30}],x] (* Harvey P. Dale, Apr 18 2014 *)

Formula

G.f.: (x^2 - (sqrt(1-4*x)+2)*x + 1)/(sqrt(1-4*x)*(x-1)^2). - Harvey P. Dale, Apr 18 2014
D-finite with recurrence: n*a(n) + (-7*n+5)*a(n-1) + 3*(5*n-8)*a(n-2) + (-13*n+33)*a(n-3) + 2*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jan 28 2020