A045994 a(0)=1, a(n) = M(n) + Sum_{k=1..n-1} M(k)*a(n-k-1), where M(n) are the Motzkin numbers (A001006).
1, 1, 3, 7, 18, 47, 125, 337, 918, 2522, 6977, 19415, 54297, 152507, 429974, 1216297, 3450817, 9816460, 27991422, 79989880, 229034820, 656979399, 1887653560, 5431969355, 15653355151, 45167783715, 130491471940, 377426429199
Offset: 0
Keywords
Links
- Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Crossrefs
Cf. A005773.
Programs
-
Mathematica
m[0] = 1; m[n_] := m[n] = m[n-1] + Sum[m[k]*m[n-k-2], {k, 0, n-2}]; a[0] = 1; a[n_] := a[n] = m[n] + Sum[m[k]*a[n-k-1], {k, 1, n-1}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 04 2013 *)
-
Maxima
a(n):=sum(sum(k/i*sum(binomial(i,j)*binomial(j,2*j-i-k),j,0,i)*binomial(n-i+k-1,k-1)*(-1)^(n-i),i,k,n),k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
Formula
G.f.: 1/(1-x(1+x)*M(x)), where M(x) is the generating function for the Motzkin numbers. a(n) = Sum(Sum(k/i*Sum(binomial(i,j)*binomial(j,2*j-i-k),j,0,i)*binomial(n-i+k-1,k-1)*(-1)^(n-i),i,k,n),k,1,n), n>0. - Vladimir Kruchinin, Sep 10 2010
Conjecture: (n+1)*a(n) + 2*(-2*n-1)*a(n-1) + 2*(-n+3)*a(n-2) + (11*n-19)*a(n-3) + (11*n-27)*a(n-4) + 3*(n-3)*a(n-5) = 0. - R. J. Mathar, Sep 27 2013
Comments