A045996 Number of triangles in an n X n grid (or geoplane).
0, 4, 76, 516, 2148, 6768, 17600, 40120, 82608, 157252, 280988, 477012, 775172, 1214768, 1844512, 2725000, 3930384, 5550844, 7692300, 10482124, 14066996, 18619128, 24337056, 31449200, 40212160, 50921316, 63907468, 79542108
Offset: 1
Examples
a(2)=4 because 4 isosceles right triangles can be placed on a 2 X 2 grid.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
- I. L. Canestro, Checkerboard, sci.math 22 Oct 2000 [broken link]
- I. L. Canestro, Checkerboard, sci.math 22 Oct 2000 [Cached copy]
Crossrefs
Cf. A000938.
Programs
-
Mathematica
a[n_] := ((n - 1)^2*n^2*(n + 1)^2)/6 - 2*Sum[(n - k + 1)*(n - l + 1)*GCD[k - 1, l - 1], {k, 2, n}, {l, 2, n}]; Array[a, 28] (* Robert G. Wilson v, May 23 2010 *)
Formula
a(n) = ((n-1)^2*n^2*(n+1)^2)/6 - 2*Sum_{m=2..n} Sum_{k=2..n} (n-k+1)*(n-m+1)*gcd(k-1, m-1).
a(n) = binomial(n^2,3) - A000938(n). - R. J. Mathar, May 21 2010
Comments